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A NON~LINEAR RENEWAL THEGRY WITH APPLiCATION>
TO SEOUENTIAL ANALYSIS 11

by

T. L. Lai and D. Siegmund

SUMMAKY

This paper continues earlier work of the authors. An
analogue of Blackwell's renewal theorem is obtained for prccesses
Z =S + & , where S 1is the nth partial sum of a sequence

n n n n
Xl,Xz,... of independent identically distributed random variables

with finite positive mean and &n 1s independent of Xr* seisa anid
1

l’xn+4
has sample paths which are slowly changing in a sense made precise
below. As a consequence, asymptotic expansions up to terms tending
to O are obtained for the expected value of certain first pascage

times. Applications to sequential analysis are given

1. INTRODUCTLON

Let XL’XZ"" be independent identically distributed random
variables wicth positive mean y and finite variance 02. Let

S =X 4+ ...+X andZ =S + £ , where for each n §_1is inde-
n 1 n n n n n

pendent of Xn ,X .+ . This paper continues the program begun

+1’ " n+2’"

by Lai and Siegmund (1977) of developing a remewal theory for Zn

under conditions which guarantee that the sample paths of the &n




e

process are slowly changing in a suitable sense made precise below.
In order to facilitate comparison of these conditions for different
theorems and to provide a convenient reference, the main result of
Lai and Siegmund (1977) is stated as Theorem 1. The interested
reader may find the informal discussion contained in that paper
helpful in motivating the decomposition of Zn and the conditions
imposed on &n.

For b > 0 define

(1) T = T(b) = inf{n: Zn>b}
and
(2) T =1(b) = inf{n:Sn>b}, T, = T .

Theorem 1. (Lai and Siegmund, 1977). Let 1/2 < a < 1 and assume

that

1

(3) b (T-bu ") + 0

in probability. Suppose that for each n > 0 there exist n' and

P > 0 such that for all n > n'

(4) P{ max [ -€|2n}<n
n<ji<n+pn

If Xl is non-lattice, then

(5) lim P{Z, -b<x} = (ES_ 3.
b+ + (0,x] +

SN



The first results of this paper are an analogue of

Blackwell's renewal theorem and a corollary.

Theorem 2. Suppose there exists 1/2 < a < 1 such that the following

three conditions hold:

(6) E|Xl'2/a <w

(7 for each € > 0 z°1° P{le | >n"e} <=

and for each n > 0 there exist n' and p > 0 such that

(8) aP{‘Ej-EnIZn} <n (n>n")

znjj§p+pn

Lf X1 is non-lattice, then

il

(9) 50 P{b<2z <b+h} » h/u (b > )
1 n—

Corollary. Suppose there exists 1/2 < & < 1 such that (6), (7), and

(8) hold. Let p > 0 and assume E(Xt)p+l

<o If {A, b2byt is a

family of events and {((£,-§ )+)p I b>b.} is uniformly
T -0

T=-1

A’

integrable, then so is {(ZT'-b)p 1 b>b,}. In particular, if

0

Ab’
E(sup(f{_ -§£ )+)p < o, then {(2 -b)p, b>b.} is uniformly
= n n-1 T -0
integrable.
Theorem 2 and its corollary are proved in Section 2.
Theorem 3 of Section 2 is a somewhat different renewal theorem
required by some applications (cf. Section 3). Theorems 1 and 2

together imply the main result of this paper, Theorem 4, which

e




contains an asymptotic expansion for ET(b) up to terms which
vanish as b *» «,
In many applications the behavior of Cn is governed by a
2
term involving (Sn -np) /n; and to the extent this is so, diverse

conditions on En may be replaced by moment conditions on X For

1
technical reasons required by different apptications the statement
ot Theorem 4 1s quite complicated. Proposition 1 is designed to
facilitate applications in those cases 1in which a single moment con-
dition suffices to replace several of the more cumbersome conditions
on &n. For motivation of this formulation and method of proof see
Pollak and Siegmund (1975). The proofs of Theorem 4 and

Proposition 1 are given in Section 3, which also contains some
information on Var T as b + =, Some applications are discussed in
Section 4, and Section 5 contains a comparison of the results of
this paper with those of Woodroofe (1976a, 1977).

Let 57 = ‘F((X[,E), .0y (X6 )), 0 =1,2,...

Theorem 4. Assume that for some & > 0

(e PIT<8b} = ob™h)  (b+%
Assume that there exists a sequence of events An £ ‘§T; such that

oo

(11) 5 P(U A) <w (A = complement of A) ,
n k
k=n
and on A
n
(12) &n = f(n) + Vn s
4

RO —pes N—— E«:




T —

where for some 1/2 < a < 1 the following conditions hold:

(13) f£:[0,0) » TR satisfies lx-o'f(x)l +  sup oL]f(y) -f(x)| + 0
X<y <x+x

as x > @ V_ 1s é"’r'; - measurable and satisfies

(14) L P{sup kv |>el <> (e>0) ;

k>n .

(15) Vn converges in distribution to a random variable V ;

(16) the sequence V; = max IV | is uniformly integrable ;

n<i<n+n J

and for each n > 0 there exist n' and p > 0 such that

(17) I P{lvj =2 lenk<n  (axs) .
nijf_nﬂ)n
Suppose xl is non-lattice and (6) holds. Then
(18) LET = b ~ £(u"1b) - EV + ES> /2ES_ + o(1)
T T
+ +
as b + o=,

Proposition 1. Let Yl,Yz,... be independent and identically dis-

tributed with mean 0 and finite variance 52. Let u, and v be
random variables such that for some positive constants c, o o,
and B

B

(19) |un—c| <n and |wn| 0 SO

n
P & n 2
Assume that EIYll < o for some p > 2. Let Vn u“(Z1 Yk) /n + W

Then Vn£° V, where V has the distribution of caxi. Also vn

et TR




satisfies (14) for any a > 4/p - 1 and (16) for any 0 < a < 1. 1In

addition for

0 < a < min(pB/2, p/(p+2)) ,

given any n > 0 there exist n' and p > 0 such that
(20) 2 P{ max |V —Vni_:n} <n (n>n')
n<j<n+on n<i<)

In particular (17) holds.

2. NON-LINEAR BLACKWELL'S THEOREMS

Proof of Theorem 2. The notation below is chosen to facilitate

comparisons with the proof of Theorem 1 of Lai and Siegmund (1977),
which contains similar basic ideas although their technical imple-
mentation is different.

lLLet a, n, and 0 be as in the statement of the Theorem. Set

( (s
= [n —onl/A], n, = [ﬂo'*0n6/4] 8

-1
(21) B * U (k) o, 0 0

0

By Lemma 1 below for m sufficiently large and fixed, for all suffi-

ciently large b

(22) :mj_nf_nlp{biznib+h} E
and also
(23) P{b<Z <b+h} -0 as b +» ©

n’n ol e

-2
Obviously,

6
W e _ & b

e

S SRR
.

d

S——




T

(24) /3 Pib<Z <b+hl > 0 as b »
n<m Sy

it remains to estimate the series ot terms P{b<Z <b+h} for
i

\ 5 r each nl < imes n2

o
”
=
=]
ri
(9]

Pih<Z <bthi < PULE —F n}t
S - n

n.,i—
" 5§
(25)
+ Ptb~-n<2 +(S -S )<b+h+n!
ol ¢ n B -

1 1

By (8) and (21) for all large b

(26) S SERRERMENE - ¢ e Y
nl<n\n2 n n,
Furthermore,
Y W .. P{b-n<Z +(S -S_ )<b+h+n} = Eglv-2_) |,
nl<n<n2 n, n oy ny
where
(28) g(t) =quu_nlPt[—nisjl(t—ﬂ)+nf4m

It will be shown in Lemma 2 below that as a consequence of

Blackwell's Theorem

(29) Eg(b~Z ) » (h+2n)/u
b |

Then by (22), (23), (24), (25), (46), and (29)

lim sup 5] P{b<Z <b+h} £ 20+ (h+20)/u

b »eo

Letting n » 0 gives one inequality. The inequality in the other
direction follows by a similar but easier argument, which completes

the proof.

R




Lemma 1. Under conditions (6) and (7) for m sufficiently large and

fixed, for all large b (22) holds: also (23) holds.

Proof. Let 0 < € < pu/9. Note that for all large b and n > n if

2!
Sn e o A ﬂnu and &n el anu, then by (21)
S 4+ E 2>pnu- 2cnu >Nl - Zena >n it =b + h
n g e - 2 2 0

From (6) it follows that I P{‘Sn-nu' »ne} < » (cf. Baum and Katz,
1965, Theorem 3) and hence by (7) as b » =

. ¢ '3 4 o
Zn_)-nz P{biznf_b‘f‘h} < 5,nin2(P{|Sn-—npl >en )} o+ P{lgn‘ > en }) >0 .

This proves (23), and (22) follows by a similar argument if m is

chosen so large that

3 o o
Lnim(P{lsn-nul >en ) o+ P{I&nl e 1) S n .

Lemma 2. Under conditions (7) and (8), for g defined by (28), the

limit (29) holds.

Proof. It suffices to show

(30) g(b-2 ) » (h+2n)/u a.s. (b » )
1

and that g is bounded, for then (29) follows by dominated

convergence. Let v(b) = n, - n By (7) and the strong law of

2 i
numbers Z = un. + o(n?) =b - pul-a b%/4 + o(b™). Hence by (28),

n 1
1
to prove (30) it suffices to show that for arbitrary real numbers

£d) = out~® v%74 + o 0™




{ < ? > 9
(31) Zj<v(b) P\z(b)__SJ:;z(b) +h+2n} + (h+2n)/u
But 1f § > v(b) and S, > 241/31  then by (21) 5, > ou"% %3 + o)
> z(b) + h + 2n for all large b, and it follows that
z {s, <z 1+ 2n} < & {8 < 241/3%F + 0
i>v(b) P S3_~/(h) + h e 1>0(b) ! i

Thus (31) and with it (30) follow from Blackwell's Theorem. That g

is bounded is a consequence of

w0

(32) L S e B - :'n=0

P{-h-2n<S <h+2n} < «
S8

The series in (32) converges because the random walk ‘Sn} is

transient (cf. Feller, 1966, pp. 199 ££.).

Proof of Corollary to Theorem 2. Assume E(sup(f —’n l)-) < o,
n ==
n>]
For x > 0 and all large b
{ )% } g p < X >
P‘YT b > 2x} < n=0 A b, nﬁ bl b 4
(33)
+ Pisup(f_ -§& )+ X
) n n~1 —
n
Also
L . Pz <h;Z +X >b+x}=J P{X Mb#x-.tf P{Z edy}

n=0 n— n n+1

|
(38) < gibl*l 5oy - Ny ey e
S Lew PIX,2b4+x-k} I o Plk-1<2 <k}

- const.({: P{Xl;:y}dv + P{Xl;:x -1b

~

To see the last inequality in (34), note that by Theorem 2 there




e — e e s

exists a k. such that for all k > k. 5 . P{k<Z <k+1} < 2/u,
0 ~ 5y 2 et e o

while (6) and (7) imply I P{Zn:;ko‘flr < © (cf. Baum and Katz, 1965,

Theorem 3). The uniform integrability of (ZT-b)p follows from (33)

- - &
and (34,. If only {((&T-ET‘I\ )P IA } 1is assumed to be uniformly
b
integrable, (33) may be replaced by P(tZT-h;;Zx}" Ah)
<3 (7 < y > } ~ R - > 7
< Iy P{Z <b, 2 +X ., >b+x} PUE, - Ep ;2] A)

and the rest of the proof follows as above.

The following theorem is equivalent to one of the main
results of Woodroofe (1976a) in a number of special cases, although
its abstract formulation and proof are different. (See Section 5
for a more systematic comparison of the results of this paper with

those of Woodroofe, 1976a.)

Theorem 3. Suppose there exists 1/2 < a < 1 such that conditions

(6) and (7) hold, and for each rn > 0 there exist n' and p > 0 such
that
(35) ., P1 max f,-inlirﬂ <n (n>n'")

n<j<nt+on’ n<i<j

4 4 X1 is non-lattice, then for all y > 0

-1

(36) I . PlT>n, 2 >b=y} fO PlS > t for all n>0}dt
n=0 n -y n —

Proof. Like Theorem 2 the proof of Theorem 3 consists of reducing

the general case to the case &n 0. This reduction is similar to
the proof of Theorem 2 and is omitted. However, unlike Theorem 2,

which reduces to Blackwell's Theorem in the case &n =0, the

10
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corresponding version of Theorem 3 does not seem to have appeared 1in
the literature (although under strorger assumptions it is implied by

Theorem 3.1 of Woodroofe, 1976a).

Assume then that £ = 0 so that Z =S and T = 1. Let
n n n
%
Mn - max(O,Sl,...,Sn) and M" = mln(O,Sl,Sz,. .). Then (36) becomes
o 1 -1 Fy®
(37) % PM <b, S >b-y} »u = J P{M™ > t }dt
n=0 n— n

(‘V’O]

Let o(n) denote the nth (strict) ascending ladder time, 1.e.,

0(0) = 0 and for n > 1 o(n) = inf{n:n>0o(n~-1), S >S }
= n o(n-1)

(o(1) = T+). let T = infinsn>1, SniO}. By considering the

(uniquely defined) smallest index k < n for which Sk = Mn one

obtains for 0 <y < b

oo

P{Mnf_b, Sn>b—y}=):k=0 f P{Si<skv¢1<k, 5, € dx,
(b_Y)b]

" < - >3 L
sj:sk 7k<j<n, S -8 >b-y x}

Summing these terms for n = 0,..., and reversing the order of sum-

mation yields

o0
(38) Zn-O P{Mn_«_b, Sn>b—y}

o0 00
-7 S <8, ‘i< > n= 3 L
ka0 Znsk (fb-—v b]p{91<sk 71<k,s, edx}P{r >n-k,8 , >b-y-x!
-/ 2 Pt >a,8 >x-y)L . P{8 <8, VWi<k,5 eb-dx} .
byy ™0 7T R k=0 * *°1 " %k "

11




Now
oo pls s Vo S eb-dx} = L £ = S, ©b-dx}
Li=0 { { Y k, S, ED dxt k=0 “n=0 Pio(n) kc, Sk b - dx
(39)
=73 _ P{s £b-dx}
/n=0 (n) b dX)
Si {1, >n, S_>x-y} = P{§_~-§,<0v0<4<n, S >x-vy},
ince P PRE \n X =y P \n t__) < LS 1y qn X =y)y EE
follows that
P{ 8 >x-y} =g . P{5 >8 <i<n, S_>x-
- M o X i sl_‘sn D<i<n, - > X
(40) 5,>8,%] >n}/P{1_ = =}
= g1, PIM*>x -y} (0<x<y)

e

The last equality uses the well known fact that ET, = l/P{T_ = o}
(cf. Feller, 1966, p. 379). Since P{M* >t} is decreasing in t,
applying Blackwell's renewal theorem to the right hand side of (39)
and taking into account (38), (39), and (40) vyields

P{M <b, S >b-y} + E1, [ P{M* > x - y}dx/ES.
1 R n ;i T
(0,v) +

= P{M* > t }dt
(-y,0]

2 A
Remark. The condition that 0 = Var Xl < © was not used in the

preceding proof for the special cuse [n = 0.

3. EXPANSIONS OF ET(b) AND Var T(b)

Intuitively the random variables Zn and T(b) are the same

variables in Theorem 4 as in Theorems 1 and 2. For technical

12




reasons, in the proof that follows new random variables 2; and T'(b)
will be defined in terms of the original Zn and T(b), and Theorems I

and 2 will be applied to these new variables.

Proof of Theorem 4. Let {en} be a sequence ot positive numbers

; X
tending to 0 to be further specified below. Since f(x) = o(x ), tor
appropriately chosen {Rn} there exists an integer g such that

y o ~ ;
[E(x) | < Enn for all x > n > n Let Ll = supin :An cceurs}t,

0
= sup{n: |V | > = = : |s -nul >e 0%}, a

L, sup{n : | n[~_£nn | L3 supin \9n nj| z€ nh, nd

e B max(nO,Ll,Lz,L3). By (11) ELl < o, By (6) (cf. Baum and

Katz, 1965, Theorem 3) and (14) for appropriately chosen tbn}
EL3 < o and EL2 < «©, Hence, EL < o,

' - =
Let £ = 0 for n < ny and for n > n, set
' (]
i Oy e $ = AL
£ £ IAn{IVn‘< Enn } Let Zn = Sn + En’ T (b) inf{n 'Zn bt,

and B = = {L<min(T,T')}. Note that IQ‘;IS_Z enna for all n.

Bb
For all € > 0 for sufficiently large b on B

(41) T = rt'), Zp =2y, aod s~ ep®er’ <™t & ep®

b b

The two equalities in (41) are obvious. The inequality in (41)

follows from
b<Zy cut +3en(r)”

and the corresponding inequality for T - 1, which hold on B. Hence

by Wald's lenua

13
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T,-b)dP - LE,dP

. = S = r 5 £
(42) UET ST dp fB ST. dpP bP(B) + ,B(l B o

B
It will be shown in Lemma 3 below that
(43) bP(B) » 0
and in Lemma 4 that

(44) / S. dP + 0
g

as b >, It is easy to see that condition (3) is satisfied for the
random variables T' and hence with the help of (15), (16), (17),

(41), and (43)

(45) fB %, dP = £(b/u) + EV + o(1)

Finally, it will be shown in Lemma 5 as an application of Theorems 1

and 2 that

2
L >
(46) (ZT' b)dP EST /ZEST

f
3 - -

Relations (42)-(46) yield the theorem.

Lemma 3. Under the conditions (6), (11), and (14) the relation (43)

holds.

Proof. The conditions of the lemma imply that EL < ®, where L is
defined as in the proof of Theorem 4. To prove (43) it suffices to

show that
(47) bP{T<L} + 0

and

14
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(48) bR{T"<L} » O
Now for arbitrary § > O

P{T<L} < P{L>6Db} + P{T<Sb!}

£ (sb)7 s LdP + P{T<éb}
{L>8b}

Hence (47) follows from (10) and the finiteness of EL. Since by
definition l&r'll < 2€n na, it may be shown that bP{I'iGb} + 0, and

then (48) follows from a similar argument.

Lemma 4. Under the conditions (6), (11), and (14) the relation (44)
holds
Proof. By the Schwarz inequality and Wald's lemma for squared sums

[ spol = | L (5p-uT)dP + u/ Tap|
B B B

< {E(S%—uT)ZP(é)}l/z +u [ TdP
B

= {OZETP(ﬁ)}1/2+w’ﬂ LdP + ul _TdP.
{1<L} {T'<L<T}

It is easy to see that ET = 0(b) and hence by Lemma i
E(T)P(B) -+ 0 (b =+ )
The conditions of the lemma imply EL < ® and hence

f{Tf_L}LdP e ) SRR

To complete the proof it remains to show

15
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] TdP » 0
{T'<L<T}

1* and |€T—1l L8 Ta, S0

- U - <
If T>L, then S, -u(T 1] < e o

T-1
. a
b> Sy + &, 2u(l-1) - 3T". Thus for all large b

{T>L}C {T<2b/u} and it follows that

s TdP < 2b/u P{T'<L} + 0
{T'<L<t}

by Lemma 3. This completes the proof.

Lemma 5. Under the conditions of Theorem 4, the relation (46) holds.

Proof. Lemma 3 and (41) show that condition (3) holds for the stop~

ping times T'. Also the conditions of the corollary to Theorem 2
are satisfied with the events A of the corollary being the events B
defined in the proof of Theorem 4 (recall especially (13), (16), and

(41)). It follows from Theorem 1 that Z%,

bution and from the corollary to Theorem 2 that the (Z'.-—b)IB are
b

uniformly integrable. The lemma now follows by simple computation.

- b converges in distri-

Proof of Proposition 1. The convergence in law of Vn is immediate

from the central 1imit theorem. That (14) 1s satisfied provided
p 2 4/(1+0a) follows from Theorem 3 of Baum and Katz (1965).

Let Un = 7 The calculations given below prove (16) and

n
T e
(20). Several applications are made of Kolmogorov's inequality for
submartingales (cf. Chow, Robbins, and Siegmund, 1971, p. 24) and

the inequality

(50) rslunl"_<__cﬂ"/2

16




(cf. Doob, 1954, p. 225). Here and in what follows C denotes con-
stants which may differ from one appearance to the next. The proof
of (16) 1s an immediate consequence of the inequalities

T e
P{ max (U, 711 "x}:P{ max (.'2 > nx }
n<)<n+n n<j<ntn

< ()P gy |P<cxP/?
[n+n"]

To prove (20) note that for { > n
2 2 -1 2
Ui/i . Un/n n U“(u1 - un)

Yy

-1 2 -1 -1 24
+ui{i w, Un) +21 Un(Ui‘Un) (ni) ~(4 n)Un,.

Hence (20) is a consequence of the following inequalities.

a Q
Ijen’ P{ max 17w, ~u %o nd < 2T B( max ju, - v |?>na)
n<i<j 4 n<i<i T
< (m)7P/2 gton’ Elu, -u_|P
-—— J-n J n
-p/2 n+pn"> /2
< o) % £ERR (4 - w)P
Bsa
< cim) P2 (on®?
n+ na -1
Z_p P{max 1 "|U (Ui-U)|>n}
j=n “iiij n n
n+pn”
_<_£j_n E[P{ max lui-u | >an/|u_|{u_}]
nf_iﬁ,j n n n
2
o +1
=p g0tpn p -u |P =p _-p/2 oy 2
(nn) Lyen E(]u_| luj v l"l<cnn (pn ) s

17




QL
Yn+on 1-a

1=n

P{ max (l—n/])Ui/n >nt < on” P{n.l Ui}_‘_nn /p}

n<i<j

Lo +pr2)

n/ 2
<coe/mP “n

2

(8
<n+P -
n+pn P{n lU
n

1=n

x

-1 2 -8
P{n " U~ max lug = | >nt < on' (2n P) >n}

n<i<d

2 -Rp/2
p/ nu Bp/

< Cpn

The preceding results show that to a first order approxima-~
tion the behavior of {Zn} and T is asymptotically the same as that
of {Sn} and T, although differences appear with higher order asymp-~
totic expansions. According to Chow, Robbins, and Siegmund (1971,
ps 31) Var(r) ~ ozb/u3 as b > »; and it should come as no surprise
that under conditions similar to those of Theorem 4, one may show
that Var T ~ Ozb/u3 also. Indeed, such a result has been proved by
a different method and applied by Woodroofe (1976a, 1977) in several
special cases. The details of such an analysis seem sufficiently
similar to the proof of Theorem 4 that they have been omitted.

1t would be more in the spirit of the present paper to
obtain an expansion for Var T up to terms which vanish as b + =,
Unfortunately, the authors have been unable to produce such a result
even in the simplest special (non-linear) cases. For the linear
case, in which &n 2 Oy Zn = Sn, and T = T, it is possible to obtain
an expansion of Var T = Var T up to terms which vanish as b + ® as
an application of Theorem 3. This result seems to be new except

under the further assumption that X. > 0 --see Smith (1959).

i
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Theorem 5. Assume that E(Xl)3 < @ and X. 1s strongly non-lattice in

1
the sense of Stone (1965). Then as b » =

3

(51) Var T = 4 <52b + u-ZK + o(l) 5

where K is given by

: )
K = 02Es® /2uEs_ +2{Es’ /Bs. }%- 2 gs’ jEs
T T 4 T T 3 1 T
= s o+ + + *+
(52)

~(Es? /ES_)E{min s } -2 J B{S_ (y ~X}P{min §_< -x}dx
5 + n>0 2 » n>0 5

Proof. It is well-known (and is the linear case of Theorem 4) that

as b » «
(53) WET = b + ESZ /2ES_ + o(l)
T T
+ +
Similarly, for 1 = 1 or 2
i -1 i
(54) BB -8y = (28 )" x P{ST > x}dx
+ (0, ) +

Also ET2< ©, 80 by Wald's lemma for second moments (cf. Chow,

Robbins, and Siegmund, 1971, p. 23) and elementary algebra

2 2
U Vart = E(m-ST+ST—uEI)

E(S, - WD) +E(S, - uEN® = 2E[(S_-u0)(S_-LED)]

(55)

OZET + E(sT -b+b- uEt)z - 2E[(ST-b + b=urt) (Sr'b +b~uET) |

0221- (uEr-b)z-E(Sr-b)2+21-:{(ur-b)(sr-b)}
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Hence by (53) and (54)

i 2 s S - 1 A 2
W' Vart = 0"b/u+0"ES. /2uES_ + {EST /ES_ }
+ . s +

(56)

-ES?/]ES + o(l) +2uEt’(1-Er)(ST—b)}
T+ T+

It remains to evaluate the last term on the right hand side of (56).

By an easy renewal argument

o

(57) Et(?—ET)(ST-b)}=Y. {E(S —x)-E(ST —b)}P{T>n,Sn€b—dx}.

n=0 EO,”) T(x) (b)

It follows from standard fluctuation identities (especially Feller,

1966, p. 570, equation (3.6)) that ST has a distribution which is
+

strongly non-lattice in the sense of Stone (1965). Also E(XI)3 < ®

implies ES? < ®, Hence by Theorem 3 of Stone (1965) applied to the
+

renewal process determined by ST , equation (54) for 1 = 1 may be
+
sharpened to read

2 -2
(58) E(Sr(b)°b) = 1-‘.:;T 12 EsT -H(b) +o(b “logb) ,
+ +
where
= fx il S >
(59) H(b) k4 P{hT y Hdy

+

is integrable at + =, Hence by (58)

2
-x) -ES_ /2ES_ [

|E(S
* + +

(x)

is a directly Riemann integrable function of x. It follows from

20




(53), (57), (58), and Theorem 3 that

1

(60) E{(T-ET)(ST—b)}+u_ J {E(s -x)-Esf /2ES_ }P{min 8 > -x}dx.

fogag - AR - % w0

Since Z(x) = E(ST(X)-X) satisfies the renewal equation

Z=2z+F * Z with F(y) = P{ST <y}, it may be shown by taking
+
Laplace transforms and making a Taylor series expansion that

(61) {E(S,(py =% -Es? /28S_ }ax = 1/4(Es? /ES_ Y2 -1/6 ES] /ES_
[0,) - + + + + L8 f4+

and obviously

(62) 7 P{min S_ < - x}dx = - E{min(O,Sl,SZ,...)}

[0,=) n>0

The theorem follows by substituting (60)-(62) into (56).

Remark. Even in those cases where the moments of ST can be
computed, the authors know of nc general way to comD:te the integral
appearing in (52). However, for numerical purposes the last two
terms in (52) are "almost equal' and opposite in sign and can prob-
ably be neglected. To see that they are "almost equa!'' observe that

E{ST(X) -x} » ES$ /2ES as x*=, and if this were actually an equalityv

+ L
rather than just a limit relation, the two terms would be equal.

4. APPLICATIONS TO SEQUENTIAL ANALYSIS

Theorem 4 mav be applied to yield asymptotic expansions for
the expected sample size of a variety of sequential tests, including

the classical sequential xz, t, and F tests. Many of these
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applications are conceptually similar, and for brevity only two have
been included here. The first exampie was studied by Pollak and
Siegmund (1975), who ignored the problem of the excess over the
boundary in their analysis but otherwise provided a concrete model
from which Theorem 4 has been abstracted.

For 6 in some open interval J containing 0 assume ihat
exp(Bx -Y(B)) is a probability density function with respect to a
probability distribution H and that Y(0) = ¢'(0) = 0 and ¥"(6) > 0

for all 6. Let F be a probability on J and define

f(x,t) = J exp(yx - tY(y))dF(y)
J

Assume that xl,x are independent, identically distributed ran-

gree

dome variables such that for some 6 €J- {0}

(63) Ex, = v'e® ,

and that F' exists in some neighborhood of 0 where it is continuous

n
and positive. Let s, = Zl X, and Zn log f(sn,n). Take

1 %”1
0<y, <Yy,<Fand A = {lsn-nw'(e)l <n }. A straightforward

modification of the proof of Theorem 1 of Pollak and Siegmund (1975)

shows that on An

72 = 8s_ -ny(8) +1log [/ expl[(y-0)s_~n(Uiy) -v(8))]dF(y)
n n J n

-8 -%log n+% log 2m(F' ©))2/9"(8) +tu (s - nw'(e))zlwn(e)“+'n ' ‘

Here Sn = e.n-nw(e) and u, and v, are random variables for which
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and lwn] < ¢, with ¢ non-random and converging to

0. Now assume that for some p > 4

(64) E[xllp <

N

! - g

Choose Y1 + 2y2 < 5 and set a = + Yl and B = > Yl’ so
a < min(28,2/3). Let V_ = u (s_-n¥'(0))2/2¢"(6)n + w on A and 0

e n n n n n
elsewhere. It follows from (64) and Theorem 3 of Baum and Katz
(1965) that (11) holds, and by Proposition 1 that (14), (16), and
(17) are satisfied. It is easy to see that (10) need not hold with-
out further assumptions, but it does hold if either exp(f8x -(8)) is

the true density function of x., i.e.,

1’

(65) P{xIE:dx} = exp(Bx ~Y(B))dH(x) ,

or (64) holds for some p > 4 and for some gz >0

(66) V(e > o for all 8eJ

That (65) implies (10) follows from Lemma 3 of Pollak and Siegmund
(1975). A simple application of the Hdjek-Rényi-Chow inequality to
modify the proof of their Lemma 7 shows that (64) with p > 4 and

(66) imply (10). Hence by Theorem 4 as b + »

I(B)E(T) = b+%[102(b/1(8)) - log{2n[F'(8) ]Z/w"(e)} - Sz/w"(e)]

(67)

+ Esi /2F,sT + oLy
+ +

where 1(8) = 6y'(8) - ¥(0) and O° = Var %, .
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The approximation (67) without the term involving ST was
+
given by Pollak and Siegmund (1975). Classical random walk theory

: 2
leads to an evaluation of ES_ /2ES_  in terms of
+ +

(68) ¥ a7k 1 g dr .

; n

(S5.<0

(5. < )
which in general is very difficult to compute. For the special case
in which the x, are N(@,1),

2 2
(69) ES; /2ES_ = 2+ 6°/2 - 20B(8/2)
+ +

where
i 1

1
2 p(6n) - 0 0(-6n2)} .

o0
B(8) = I {n
1
A brief table of values for B is given by Siegmund (1975). A simple
useful approximation is given by

ES? /‘ZF,ST = 0(.584+6/8) + 0(82) e+0) .
- -

For the numerical values considered in Tables 1 and 2 of Pollak and
Siegmund (1975), use of the term Esf /2[-‘.5T reduces an error of
about 107 by a factor of roughly one+ha1f.4-Except for special cases
computation of this term is quite difficult and perhaps not worth
the necessary effort. This is in marked contrast to the approxima-
tion of error probabilities, where analyzing the excess over the

boundary can lead to dramatic improvement in the accuracy of the

approximation (cf. Siegmund, 1975, or part I of this paper).
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The second example involves a stopping rule suggested by
Siegmund (1977) for testing whether a normal mean is 0 when the

variance is unknown. Let x ,Xx_,... be independent and normally

| Gy
~ ~
distributed with mean u and variance 0“. Put o x1 S ST xn,
- = e o 2 S i
X =1 15 , 87 = (s ~nu/g, v_- = n 1 /An(x - X )2,
n n n n n 1k n
= 2 ~ o~ = “2
t* = 1" (x —“)2/7 -n, and 8 = Yy/o. Let Z = n/2 logil+x /vz},
n 17k n n n
and for m > 3 define T = T(b) = inf{n:n>m, z >b}. Obviously
- = o 2 ” 2
Zn = n/2 g(xn, n El xk), where g(x,y) = - log(l -x"/y). Expanding

< ~9 v
g in a Taylor series about (y, 'J“«t-uz) and collecting terms yields

log(1+0%) +81+8%1

N
)
NS

o - Lataseyt o
n 2 n

2

+ —;-(1+92)-2(1+64)s:2/n +ta+eh” 92(62+2)t:2/n

(1+02)“2 8s* t*/n + w "
n n n

where lwn! s W(n-zis:i3+n—2't:!3) for some function W which equals

0 at 0 and is continuous there.

-2 *|3

<E n-zlt*|3<€. }, where €~ 0 suffi-
n n v n n

let A = {n
n

ciently slowly that (11) holds. Let Sn = n/2 log(1+92)

+ 140571 gg* _ 172(040H7 92 ox, v(1) o gx2), 42 _ k2,
n n n n n n
and \(3) = s* t*/n. Also let
n n n
v = 2a+ehHrasehyt + 26?4 v? < 2Py 4w

on An and 0 elsewhere. With the aid of the identity
2V(3) = (s*+t*)2/n - V(l) - V(z) and Proposition 1 it is easy to
n Sl n n

check that V!gi) for 1 = 1,2, and 3 and hence Vn satisfy (14)-(17).
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As in the preceding example (10) requires a special argument. Let Po
denote the probability under which the x's have expectation ﬂ=70. From

the trivial inequality PO{Tﬂin} f_Zn P {Z >b} and an analysis of

k=m 0 "k
the tail of the t-distribution, it may be shown for x > 0 that

1
(68) PO{T:bx} = o(b2 exp[- b(1--12n—)])

as b » ®». By Lemma 3 of Pollak and Siegmund (1975), for arbitrary
0O #0and vy > 0
1

(69) P{T<n} < 1-0(y) +exp(62n/2+y6n2)Po{Tin} .

Putting y = bI/A in (69) and appealing to (68) yields (10) for any

§ < 29-2(1 ~2/m). Hence by Theorem 4, for 8 # 0 and m > 3

(70)  log(l+82)ET = 2b-1 + 8%/ (1 +0%)% + Esi /28BS +o(1)
+ +

as b » o,

5. COMPARISON WITH WOODROOFE's RESULTS

The purpose of this section is to discuss briefly the
relation of the results of this paper to similar results obtained
recently by Woodroofe (1976a, 1977) by completely different methods.
In general terms the methods of this paper and its companion develop
renewal theory for non-linear functions of a random walk Sn by
expanding the function and applying classical renewal theory to the

dominant linear term. In contrast Woodroofe considers the first
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n

passage of a random walk Sn to a non~linear boundary which he
analyzes by expanding the boundary around an appropriate point. One
consequence of this difference in formulation is that in this paper
and its companion a fairly small number of theorems provide a uni-
fied theory, whereas Woodroofe is required to reapply his method
with 1ts fairly elaborate computations to deal with different stop-
ping rules. A technical difference is that Woodroofe requires a
blanket smoothness condition on the distribution of his random
variables, which has no counterpart in the present development.
Other technical differences are described below.

Let X sXgyene be independent identically distributed random
variables with positive expectation ; and finite variance 52. Let
L S SR X - Woodroofe (1976a) studies the behavior of the

n 1

stopping rule

(71) Tl = inf{n:sn‘fcny} (c>0, 0<y<1)

as ¢ + ®, (Actually for some results a slightly more general class
of stopping rules is considered, but since Woodroofe gives no appli-
cation for these more general rules, and since their introduction
would complicate this discussion, they have bheen omitted.)
Statistical applications of the stopping rule (71) have been des-
cribed by Woodroofe (1976b) and Siegmund (1977). Under the addi-

tional restriction

(72) P{x, <0} =0 .

Woodroofe (1977) studies the behavior of

s
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o

(73) T, = infin:n>m, s <cn'L(n)} (c>0, y>1, m=1,2,...)

as ¢ * 0, where L(n) = 1 + const./n + o(n-l) as n + *, Both (71)

and (73) may be written in the form

(74) T = inf{n IRaw, (n4-5+-6n)g(n-lsn) »hi

where g(x) = (x+)1/(1-y), b = g(c), and 6n + 0, Suppose more

generally that g: (==, ®) » [0,») is three times continuously dif-
ferentiable in a neighborhood of I and that g'(a) > 0. Let Cn + 0
-2 -3 i
and A = {n “|s -np| <e }. By Tavlor's theorem, on A
n n n n

e i SR R
ng(n's ) = ng(u) + (sn—nu)g'(u) div wettggthwo g"(u) + A

where fwnl < w(n_zfsn —nﬁ!a) for some function W which vanishes at 0
and is continuous there. Let Sn = ng(ﬁ) + (sn'-nﬁ)g'(ﬁ) and

¥ (sn-nﬁ)Z/Zn - (54-5n)g(n'lsn) on A and 0 otherwise. It may
be shown as in the second example of Section 4 with the aid of
Proposition 1 that for suitable € (11) and (14)-(17) are satisfied
with a = 2/3, provided EfxliA < @, Thus Theorem 4 applies to give
an asymptotic expansion for E(T) provided that (10) holds, and as
always a specfal argument is required here.

For the stopping rules (71) and (73) proofs of (10) under
appropriate conditions follow from Woodroofe (1976a, Lemma 7.1 and
1977, Lemma 2.3). Use of the Hajek-Rényi-Chow inequality (cf. Chow,
Robbins, and Siegmund, 1971, p. 25) together with (50) would

simplify these arguments.
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Hence Woodroofe's expansions of ETl and ET2 follow from

Thecrem 4.

In Woodroofe's work a central role is played by results
resembling Theorem 3, which form the basis for subsequent
calculations. One example is Theorem 3.1 of Woodroofe (1976a),
which says that {f Elel3 < @ and Woodroofe's blanket smoothness

condition is satisfied, then for T1 defined by (71)

5° pl{T > LR R
" P‘T1 n, sn cn y}
(75)
Woie n .
[(1-Y)u] l_fy P{s >nyn-x for all n > 1}dx

Deriving (75) from Theorem 3 requires the slightly stronger moment

/2. With (71) rewritten in

the form of (74) (with § = Gn = 0) the inequality s, > cn' - y

—Y)l/(l-Y)_

condition E|x1|p < » for some p > 1 + 51

becomes Zn = ng(n-lsn) > (bl_Y-yn As in the proof of

Theorem 2, it is easily shown that only the terms with n, < n <n

1 i

where 0y and n, are defined in (21), are non-negligible in evalua-

ting the limit of the left hand sides of (75). For these values of
n, which are ~ b/u, a simple expansion gives (bl_Y'-yn-Y)l/l-Y
=b - uYy/(l-—y) + o(l). Now Theorem 3 and a simple change of
variable yield (75). A similar argument applies to the stopping

rule Tz of (73),

R AT s e
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